Disentangling collective trends from local dynamics.
نویسندگان
چکیده
A single social phenomenon (such as crime, unemployment, or birthrate) can be observed through temporal series corresponding to units at different levels (i.e., cities, regions, and countries). Units at a given local level may follow a collective trend imposed by external conditions, but also may display fluctuations of purely local origin. The local behavior is usually computed as the difference between the local data and a global average (e.g, a national average), a viewpoint that can be very misleading. We propose here a method for separating the local dynamics from the global trend in a collection of correlated time series. We take an independent component analysis approach in which we do not assume a small average local contribution in contrast with previously proposed methods. We first test our method on synthetic series generated by correlated random walkers. We then consider crime rate series (in the United States and France) and the evolution of obesity rate in the United States, which are two important examples of societal measures. For the crime rates in the United States, we observe large fluctuations in the transition period of mid-70s during which crime rates increased significantly, whereas since the 80s, the state crime rates are governed by external factors and the importance of local specificities being decreasing. In the case of obesity, our method shows that external factors dominate the evolution of obesity since 2000, and that different states can have different dynamical behavior even if their obesity prevalence is similar.
منابع مشابه
X iv : c on d - m at / 0 30 60 47 v 1 3 J un 2 00 3 Local Relaxation and Collective Stochastic Dynamics
Damping and thermal fluctuations have been introduced to collective normal modes of a magnetic system in recent modeling of dynamic thermal magnetization processes. The connection between this collective stochastic dynamics and physical local relaxation processes is investigated here. A system of two coupled magnetic grains embedded in two separate oscillating thermal baths is analyzed with no ...
متن کاملIntelligent identification of vehicle’s dynamics based on local model network
This paper proposes an intelligent approach for dynamic identification of the vehicles. The proposed approach is based on the data-driven identification and uses a high-performance local model network (LMN) for estimation of the vehicle’s longitudinal velocity, lateral acceleration and yaw rate. The proposed LMN requires no pre-defined standard vehicle model and uses measurement data to identif...
متن کاملOptimal Universal Disentangling Machine for Two Qubit Quantum States
We derive an upper limit for the reduction factor for universal disentangling machine which uses only local operations. Impossibility of constructing a better disentangling machine, by using non-local operations, is discussed.
متن کاملLocal feature analysis: a statistical theory for reproducible essential dynamics of large macromolecules.
Multivariate statistical methods are widely used to extract functional collective motions from macromolecular molecular dynamics (MD) simulations. In principal component analysis (PCA), a covariance matrix of positional fluctuations is diagonalized to obtain orthogonal eigenvectors and corresponding eigenvalues. The first few eigenvectors usually correspond to collective modes that approximate ...
متن کاملSimulating Nanoscale Functional Motions of Biomolecules
We are describing efficient dynamics simulation methods for the characterization of functional motion of biomolecules on the nanometer scale. Multivariate statistical methods are widely used to extract and enhance functional collective motions from molecular dynamics (MD) simulations. A dimension reduction in MD is often realized through a principal component analysis or a singular value decomp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 107 17 شماره
صفحات -
تاریخ انتشار 2010